AI Powers the Future of Financial Services — Just Not in the Ways You Think

February 7, 2022

Phase Change President Steve Brothers was recently interviewed for an article in The Fintech Times that considers the role AI could soon play in the financial industry. The article, "Phase Change: AI Powers the Future of Financial Services — Just Not in the Ways You Think," examines how AI will help maintain the software that runs the global financial enterprises, as well as other mainframe-based industries.

AI is already utilized by financial-industry players to automate investments, insurance, trading, banking services, and risk management, primarily on mainframes originally developed in the 1960s. Mainframe computing systems provide high security; high-speed, high-volume transaction processing; and reliable uptime. However, they can be complicated to use and require constant maintenance. Plus, they struggle to evolve quickly enough to support the increasing number of banking services supported by cloud mobility and big data.

New AI technologies can soon be used to automate software maintenance by helping developers better comprehend the source code — and make changes rapidly and precisely. The programmers that developed and maintained these huge and complex systems are in high demand (and are paid like it) or aging out of the workforce, and the financial institutions that rely on them are scrambling to understand the codebases with less experienced developers.

Rather than relying on knowledge transfer protocols to pass along specialized domain and program knowledge, financial institutions can now deploy advanced AI-powered tools to automate the process of identifying specific code that requires attention, regardless of how entangled that code is throughout the system.

Read the entire article here.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

How AI can improve software development

January 25, 2022

Transforming business operations is a constant need, and the pandemic-prompted emphasis on modernizing legacy computing systems has forced organizations across industries to accelerate their modernization plans. The problem with mainframe modernization, however, is that today’s code search tools, linters, and program analysis tools are deficient when it comes to mitigating the risks associated with improving and even simply maintaining legacy systems.

Phase Change President Steve Brothers recently authored a contributed article for DevOps.com about how artificial intelligence (AI) tools can help developers work more productively and decrease the risks associated with legacy system modernization and maintenance.

The article, "How AI Can Improve Software Development," explains how today's bug localization, code visualization, and error detection tools don't actually identify specific lines of code that require change. And, once the code is identified, developers are still required to build mental models of their applications to make sure any source code changes don't make even more bugs or crash the entire system.

Through intelligence augmentation, AI can automate the identification of specific lines of code that require change – developers simply ask the AI-driven knowledge repository where unwanted behaviors are coming from, and the AI quickly identifies the code associated with that behavior. Also, before the developers compile or check in the new code, the AI can forward simulate the changes and validate that they won't create more problems or break the system.

Read the entire article here.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

How AI can support maintenance of aging government systems

July 21, 2021

Phase Change President Steve Brothers recently authored a contributed article for Nextgov.com about how artificial intelligence (AI) tools can help governments deal with the mainframe-developers skills shortage and continue to maintain critical legacy systems.

The article, How AI Can Help with Critical Government System Maintenance Needs, describes how we should change the current industry strategy of solving the skills crisis by simply increasing the number of programmers with legacy language skills.

Brothers' article explains why the problem isn't just language skills, it's the lack of application knowledge to productively maintain applications. Supporting applications is very different than creating them. Defects are discovered through behaviors, which the developer must trace back to the flawed source code. The defective code and its dependencies can be spread throughout the codebase in multiple modules and repositories. Without the application knowledge to know how the system works, maintenance becomes an unproductive scavenger hunt. Then the developer must discover how the repair will impact the rest of the system.

AI tools help developers locate and isolate defective code by conceptualizing code computations at machine speed. It eliminates code unrelated to the bad behavior and enables the developer to find and focus on defects. Then the AI simulates running the repaired code to determine change impact so the developer is confident his work won't negatively affect the application.

Read the entire article here.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

AI rises to the challenge with COBOL

June 3, 2021

June 3, 2021

by Todd Erickson

A May 28 article published by TechRadar pro, and written by Phase Change President Steve Brothers, explains how the well-reported "COBOL skills shortage" is not really a fundamental problem for enterprises that rely on mainframe systems. The real challenge is application knowledge. Developers can learn COBOL in less than 6 months. What they can't learn quickly is specific application knowledge because that knowledge comes from experience.

Steve also describes how AI tools that assist developers in identifying and locating code responsible for specific behavior will help them reveal the application's intent and expose code that requires change. The developers will learn the application through task completion while remaining productive for the organization.

Click here to read the full article on TechRadar pro.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

Leveraging AI to close the application knowledge gap

May 25, 2021

May 25, 2021

by Todd Erickson

Although the modern enterprise moves quickly to adopt and support helpful new technologies, most organizations must continue to rely on their legacy systems for core functions. Legacy applications struggle to evolve fast enough to support shifting and evolving organization demands. The companies frequently try alternate strategies to keep pace, such as building on top of existing applications or moving them to other platforms, but these approaches only complicate another risk -- the software developer shortage.

On May 19, BetaNews.com published the article, "Leveraging AI to close the application knowledge gap," which was written by Phase Change President Steve Brothers. The story explains how the software-developer shortage forces many companies to work around legacy applications when they lose the expert developers that built and maintained them, and how those word-arounds can produce disastrous results for the organizations' bottom lines and reputations.

Steve also describes how artificial intelligence (AI) can reinterpret what source-code computations represent and convert them into concepts so developers no longer have to research and discern the original developers' intent. This enables new developers to quickly understand the applications' behaviors, and with that knowledge, the AI can quickly guide developers to the precise area of code where changes need to be made.

Read the full story here.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

How Leveraging AI Technology Enables Developers

May 23, 2021

Phase Change Software President Steve Brothers was recently interviewed for a TechChannel article on how artificial intelligence (AI) can help software developers increase productivity and reduce risk.

The article, "How Leveraging AI Technology Enables Developers: AI technology enables productivity gains, reduces code querying time, and mitigates risk," was written by Sofia Haan and discusses how AI can assist developers in quickly finding code that produces specific behavior so they spend less time analyzing, refining, and iterating queries, and more time mending defective code and writing new code.

Read the article here.

Phase Change President: Creative & focused AI needed to help COBOL skills shortage

April 9, 2021

The so-called "COBOL Skills Shortage" is compelling many organizations to impetuously hire and train programmers to maintain, support, and attempt to modernize their COBOL systems.
But understanding how to write COBOL is not enough — developers have to comprehend what an application actually does and how code changes can impact the system as a whole to avoid critical missteps. That work for those developers is cognitively difficult.

Phase Change President Steve Brothers recently wrote an article for Built In Colorado.com about how artificial intelligence (AI) can help solve the application knowledge gap problem, but only when traditional AI technology gets more creative and moves beyond understanding general business knowledge and instead learns specialized industry and institutional domain knowledge.

AI & software development

AI can help solve the application knowledge gap dilemma, but popular contemporary AI approaches are insufficient. Some AI tools can help with the syntax of writing code, but these remedies only provide incremental value.

Developers spend nearly 75 percent of their time finding the area in the source code in which they need to make a change because understanding code in these large complex systems is difficult and time-consuming.

AI will emerge as a paradigm-changing technology when it can understand code intent and “reimagine” computation into concepts, thereby doing what a developer does when they code — but at machine speed.

Read Steve’s entire Built In Colorado article at https://builtin.com/artificial-intelligence/cobol-skills-shortage.

Legacy system failures expose the application knowledge gap’s harmful risks

February 24, 2021

February 24, 2021

by Steve Brothers

Government system failures during the rush to provide public benefits to alleviate the economic effects of the COVID-19 pandemic publicly exposed the mainframe knowledge crisis that also threatens financial institutions, healthcare providers, and many other organizations foundational to the world economy.

Several states discovered the knowledge-gap’s potentially devastating consequences when waves of unemployment-claims poured into their systems as COVID-19 ravaged the economy in early 2020. The states’ unemployment computer systems crashed trying to process the deluge of claims using mainframes and decades-old programming languages.

But it wasn’t the mainframes or the legacy programming languages that failed, despite what you may have read. It was the lack of available expert programmers necessary to maintain and update these systems to handle the voluminous claims.

According to The Verge’s article, “Unemployment checks are being held up by a coding language almost nobody knows,” Colorado employed exactly one full-time programmer to maintain the state’s COBOL system prior to the pandemic. Back then, Colorado processed roughly 2,000 unemployment claims per week. In March and April 2020, that number rocketed to as high as 104,572 claims per week.

Now governments, non-profits, and private organizations are reviewing their systems’ strategies to learn from these mistakes. If your business relies on legacy systems, you probably should keep reading – and schedule some time with your IT people.

Mainframes are cornerstones

Legacy mainframe systems and software bedrock many of our most trusted institutions, including government services, finance and banking, healthcare, and insurance. In a substantial number of cases the expert developers that created and maintained these systems and software are retiring without a supporting workforce to replace them.

Besides the people that make your business run, your software is potentially the most important resource your organization has. Internal applications likely drive your employees' capabilities and productivity. Customer-facing programs attract new customers, close business deals, and increase revenue. New applications and features can open new markets and opportunities.

To maintain and improve your critical applications, your software team relies on individual engineers that developed an expert understanding of your programs through years of experience. They know the applications and all the accumulated system changes and challenges.

When those experienced engineers depart your business, the developers that replace them must acquire the same application knowledge through training, mentorship, and on-the-job programming. This exercise introduces several material business risks.

Learning on the job

Developers new to software applications typically require 6-12 months of on-the-job learning to become productive, depending on the size of the source code base. To become proficient, programmers may need up to 3 years.

Without qualified software developers knowledgeable about your applications, you endanger your business's operations, reputation, and security. You also risk a significant decrease in your software teams' productivity and efficiency.

Consider the monumental task confronting newly hired or transferred IRS developers last March. Congress passed the CARES Act on March 25, 2020, and then Treasury Secretary Steven Mnuchin announced that individual stimulus checks would be mailed in early April.

To assist with the delivery of economic stimulus payments, the new developers were required to immediately start working with the agency's source code base, which, in 2019, was estimated at nearly 20 million lines of code and includes over 60 years of legislative and system changes. As of mid-May 2020, nearly 20 million people had not received their stimulus checks, and some recipients had problems throughout the year.

These engineers didn’t have 6-12 months to become productive. They had to hit the ground running on day one. And without the benefit of weeks or months of training and on-the-job learning, they didn’t have the application knowledge necessary to understand how even simple changes could affect entire applications.

And let's not forget the productivity loss due to the remaining IRS's experienced engineers for training, mentoring, and supervising the new recruits.

What’s your risk?

Your situation may not be as dire as what the IRS faced – for now. But how much time can you really give your new developers to learn the system, and how much productivity can you afford to lose while your experienced programmers train and supervise them?

How much do you trust the developers that have just started working on your critical applications?

How confident will you be when your CEO or Board of Directors asks for assurances that the next customer-facing application update will not result in outages and lost revenue – especially if the update was programmed by a developer you hired just weeks ago?

Your software is a critical part of your organization, especially if you rely on legacy mainframe systems. You must have a plan or tool that keeps the code running and bridges the gap between retiring and departing developers and the people that will replace them.

Steve Brothers is the President of Phase Change Software. You can reach him on LinkedIn or at [email protected].

Modernize your mainframe instead of migrating away for higher customer and company satisfaction says IDC study

October 23, 2020

October 23, 2020

by Todd Erickson

Modernizing your IBM mainframe instead of migrating off the platform leads to higher customer and company satisfaction says and IDC study of 440 organizations in Australia, India, New Zealand, the United Kingdom, and the United States.

Commissioned by Rocket Software, a legacy infrastructure consulting firm, the study as reported by IT Jungle found that IBM shops that modernized their IBM mainframe infrastructure instead of migrating to more modern platforms were more satisfied across a number of metrics before and after the projects.

The shops that modernized reported higher satisfaction than the shops than migrated across the following 7 metrics:

(1) customer experience;
(2) overall performance;
(3) security, availability, and disaster recovery capabilities;
(4) agility, microservices, and DevOps;
(5) ease of finding talent;
(6) ability to incorporate AI and IoT;
(7) and API, mobile, and Web enablement.

According to the study report, in addition to seeing higher satisfaction ratings, the organizations that modernized generally reported paying less on hardware, software, and staffing.

The study seems to dispel the common IT industry myth that mainframe platforms are less capable than more modern systems simply because of their age.

Todd Erickson is a Technology Writer with Phase Change. You can reach him at [email protected].

Can AI solve the engineer shortage?

May 28, 2020

May 30, 2020

by Todd Erickson

The COVID-19 pandemic has revealed workforce shortages in a number of industries, including healthcare, food retail, and cybersecurity.

The related financial crisis and government financial assistance requests have also demonstrated a critical need for legacy system developers. The recent performance issues experienced by these financial assistance programs have exposed how dependent our financial and public infrastructure are on legacy and mainframe systems.

Phase Change COO Steve Brothers recently penned an article for ColoradoBiz Magazine about how the legacy application skills shortage threatens the software that underpins a great deal of the world's large financial and government systems.

He also talks about how artificial intelligence (AI) can be extremely effective in helping legacy application maintenance and development by introducing automation into the process, improving project management efficiencies, and by shortening the steep training curve typically experienced by developers new to these systems.

Learn more about how the improved productivity and efficiency AI brings to software development could be instrumental in maintaining and improving our critical legacy and mainframe systems.

Can AI solve the engineer shortage?
by Steve Brothers
ColoradoBiz magazine
May 15, 2020

Steve Brothers is the President of Phase Change Software. You can reach him on LinkedIn or at [email protected].

Todd Erickson is a Technology Writer at Phase Change Software. You can reach him at [email protected].

Contact

Phase Change Software
13949 W. Colfax Ave
Building 1, Suite 205
Lakewood, Colorado 80401
Phone: +1.303.586.8900
Email: [email protected]

© 2025 Phase Change Software, LLC